
Disperse Translator

Ramon Selga

rselga@datalab.es

Xavier Hernandez

xhernandez@datalab.es

Barcelona, November 8, 2012

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Introduction

Main idea:

 Striped volumes offer a lot of space but do not

support faulting bricks

 Replicated volumes allow a configurable degree

of fault tolerance but eat a lot of space

 We want to build a volume that has a configurable

degree of redundancy with a small space waste

 Solution: Disperse the data and add redundancy

Disperse Translator

Introduction

• Currently available volume types

 Striped

 Distributed

 Replicated

 Distributed+Replicated

 Striped+Replicated

 Distributed+Striped

 Distributed+Striped+Replicated

Disperse Translator

Introduction

• New volume types for Gluster

 Dispersed

 Based on erasure codes

 Configurable level of redundancy

 Better utilization of physical storage space

 Optimized bandwidth usage

 Limited I/O performance

 Small performance loss when degraded

 Distributed+Dispersed

 Improved I/O performance

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Features

• Configurable level of fault tolerance

 Volumes can have any number of bricks (B)

 A level of redundancy (R) must be defined

 Minimum allowed value is 1

At most 1 brick can fail at the same time without loss of service

nor data.

For a 0 redundancy, you can use stripe or distribute.

 Maximum allowed value is 𝐵−1

2

Almost half of the bricks can fail at the same time without loss

of service nor data.

To tolerate the failure of half of the bricks, you can use

replicate.

 The effective space is reduced (B-R)

 Redundancy is distributed evenly amongst bricks

 Tradeoff between reliability and available space

Disperse Translator

Features

• Minimize storage space waste

 Each file is divided into chunks of size S

 Each chunk is split into fragments

 Additional redundancy fragments are generated

 Each fragment is stored on one brick

 The proportion of wasted space is 𝑅

𝐵

 You can make this value as small as desired

Example:

6 bricks (B=6) of 1 TB and redundancy 2 (R=2)

Total space: 6 TB

Wasted space: 2 TB (33%)

Effective space: 4 TB (67%)

Disperse Translator

Features

• Reduced bandwidth usage

 Reads

 Always read B - R fragments of size 𝑆

𝐵−𝑅

 No overhead.

 Writes

 B – F fragments of size 𝑆

𝐵−𝑅
 must be updated

 If not a full chunk write, a read must be made (S bytes)

 Always strictly less than 3S

 On average it’s commonly near 2S (or lower if read not needed)

Example:

6 bricks of 1 TB with redundancy 2. Read/Write size 4KB (S=4096)

Read overhead: 0 bytes (*)

Write overhead: 2048 bytes (6144 bytes if read needed)

Disperse Translator

Features

• Limited IOPS

 Each brick stores a fragment of each chunk

 Reads

 R bricks do not need to be accessed

 Some reads can be served in parallel

 Writes

 All alive bricks are accessed

 No parallelism is possible

 Degradation does not have a great impact

 Distribute translator can improve that

Disperse Translator

Features

• Lock-Free Self-Healing
 Based on a new healing translator running on each server

 Managed only by one client per file basis

 Data healing is handled without any lock held

 Metadata requests are refused on the brick being healed

 Read requests are only served if belong to an already healed area

 Write requests are always handled and have priority over healing

 The healing client is allowed to read/modify data or metadata

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

How it works

• Based on erasure codes

 Fast implementation of the Rabin IDA (Information

Dispersal Algorithm)

 R additional fragments are computed from a set of

B – R data fragments

 Any data fragment can be recovered from any

subset of B – R fragments (data or redundancy)

Disperse Translator

How it works

• Each request is mapped to the involved

chunks of the file

 The chunk size can be customized

 The selected value may affect performance

 It depends on access patterns and file sizes

• For read requests, B-R fragments of each

chunk are read from B-R bricks

• For write requests, incomplete chunks are

read and then updated

• If one or more bricks are down, their

fragments are recovered using IDA

Disperse Translator

How it works

• Read operation

Disperse Translator

How it works

• Read operation

 When possible, all fragments are read from

data fragments, not redundancy, to avoid using

IDA

 Redundancy is spread over the bricks in a way

that, in average, it distributes the load

Disperse Translator

How it works

• Write operation

Disperse Translator

How it works

• Self-Healing

 Clients detect inconsistencies using metadata

 Then initiate a healing session using the healing

translator (only one is allowed to heal a single file)

 Initially entrylk() and inodelk() are held

 Healing client handshake

 Healing preparation

 Metadata healing

 No lock is held during data healing

 Finally inodelk() is held

 Final synchronization of metadata (xattr)

 Gracefully finalize the healing process

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Architecture

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Reliability of metadata

• All metadata is replicated over all bricks

 This makes metadata highly reliable

 Metadata is used to detect inconsistencies

• A minimum quorum of matching metadata

is needed

 The data of a file is only considered valid if

metadata of at least B – R bricks matches

 Split-Brain is not possible

 It will never have two valid versions of the same

data

• Special files are handled as metadata

Disperse Translator

Reliability of data

• Many concepts are similar to RAID5/6

• User selectable level of reliability

(configuring R at creation time)

 Up to R bricks (any subset of B) may fail

without service interruption or data loss

• Redundancy is spread uniformly over the

bricks

• A fast implementationof Rabin IDA is used

when a volume is degraded

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Examples

• Scenario:

 6 servers with 4 SATA disks 4TB each and

capable of 90 IOPS

 Each disk is configured as one brick

• Alternatives considered:

 Striped volume

 Distributed + Replica 2 volume

 Distributed + Replica 3 volume

 Distributed + Disperse 6.2 (B=6, R=2) volume

Disperse Translator

Examples

• Striped volume

 Effective capacity: 96 TB

 Read IOPS: 2160

 Write IOPS: 2160

 Read bandwidth ratio: 1

 Write bandwidth ratio: 1

 Maximum failed bricks: 0

 Maximum failed servers: 0

Disperse Translator

Examples

• Distribued + Replica 2 volume

 Effective capacity: 48 TB

 Read IOPS: 2160

 Write IOPS: 1080

 Read bandwidth ratio: 1

 Write bandwidth ratio: 2

 Maximum failed bricks: 1

 Maximum failed servers: 1

Disperse Translator

Examples

• Distribued + Replica 3 volume

 Effective capacity: 32 TB

 Read IOPS: 2160

 Write IOPS: 720

 Read bandwidth ratio: 1

 Write bandwidth ratio: 3

 Maximum failed bricks: 2

 Maximum failed servers: 2

Disperse Translator

Examples

• Distribued + Disperse 6.2 volume

 Effective capacity: 64 TB

 Read IOPS: 540

 Write IOPS: 360

 Read bandwidth ratio: 1

 Write bandwidth ratio: 1..2

 Maximum failed bricks: 2

 Maximum failed servers: 2

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Current state

• Disperse translator

 It’s implemented and operational with all features

enabled

 No optimizations applied yet

• Heal helper translator

 It’s implemented and operational with a minimal set

of features to allow lock-free healing

 More features can be added to improve healing

capabilities

• An alpha version is being tested in our labs

Disperse Translator

• Introduction

• Features

• How it works

• Architecture

• Reliability

• Examples

• Current state

• Future

Disperse Translator

Future

• Add cli support for managing the new kind

of volume

• Analyze the possibility and advantages of

using a RAID5-like striping

 Worse network performance

 Better IOPS

• Analyze the possibility of allowing per file

chunk size definition (using xattrs)

Disperse Translator

That’s it

Thank you very much

Disperse Translator

About us

• Who we are

 Company in the IT services sector

 32 years of experience

 Expertise in a wide range of fields

 Aware of the latest technology trends

 Partner of the leading technology companies

 We support Open Source

 Involved in some european funded projects

Disperse Translator

About us

• What we do

 Provide support in decision making to our

customers in a wide range of areas

 Smoothly integrate different technologies to

achieve the best solution for a given problem

 Develop custom applications for client/server,

web or mobile environments

 Install network and system components

 Virtualization

Disperse Translator

About us

• Our customers

 Mid-sized companies

 Some in the public sector

 Healthcare area

 Research departments

• Our customers needs (some of them)

 Need large amounts of storage space

